ESTUDIOS DE MORTALIDAD PROPorcIONAL:
CRITERIOS DE ELECCIÓN DE LOS GRUPOS
PARTICIPANTES

Miguel Delgado Rodríguez / María Siliero Arenas / Ramón Gálvez Vargas
1 Cátedra de Medicina Preventiva, Facultad de Medicina de Granada. 2 Hospital "Virgen de las Nieves", Granada. 3 Delegación Provincial de Salud, Jaén

Resumen
Los estudios de mortalidad proporcional son una herramienta de uso común en epidemiología laboral. En esta revisión se discuten los principales sesgos que afectan a estos diseños, sobre todo el efecto del trabajador sano. Dentro del análisis, se realiza un recuerdo de las diferentes opciones: el análisis de mortalidad proporcional, la razón de mortalidad estandarizada y la razón de ventaja, y las condiciones que han de reunir para que la inferencia sea válida. Dentro de los criterios de selección, el empleo de sujetos muertos en una investigación condiciona la presencia de varios inconvenientes. Tomando como base un recuerdo breve de los hechos más destacados en el análisis de un estudio de mortalidad proporcional, se establece un primer criterio para la selección de los grupos participantes: ausencia de relación entre la exposición y las enfermedades productoras de muerte del grupo de referencia, un hecho compartido con los estudios de casos y controles. A continuación, tomando como base la relación existente entre las tasas de mortalidad y las de incidencia, se ofrecen los criterios generales a seguir en la elección de las enfermedades candidatas a ser estudiadas por este tipo de diseños sin afectar la inferencia. Este tipo de diseños no introducen error cuando la enfermedad de los casos es rara e irreversible y el sesgo es negativo cuando el factor que se estudia acorta la duración del proceso. En otras circunstancias el sesgo es variable, aunque normalmente es también negativo.

Palabras clave: Métodos epidemiológicos. Epidemiología laboral. Estudios de mortalidad proporcional.

Summary
Proportional mortality designs are used widespread in occupational epidemiology. In this review those biases which can affect them, mainly the healthy worker bias, are discussed. Several options for their analysis and the assumptions to be accomplished for validity are reviewed: proportionate mortality analysis, standard mortality ratio, and odds ratio. The inclusion of dead participants in a research exhibits several drawbacks. Starting out from the analysis of this sort of designs, the first criterion to select diseases is similar to case-control studies: the reference group must not include diseases related with the exposure under study. Analyzing the relationship between mortality and incidence rates, criteria to select diseases to be investigated by proportional mortality studies are offered. These designs yield a valid inference when the disease is rare and irreversible. If the exposure shortens duration of disease, a toward-the-null bias is introduced. The direction of bias is variable under other circumstances, although it shows a trend to be negative.

Key Words: Epidemiologic methods. Occupational epidemiology. Proportional mortality studies.

Este artículo fue recibido el 8 de noviembre de 1993 y fue aceptado tras revisión el 2 de febrero de 1994.
Introducción

Los estudios de mortalidad proporcional constituyen un tipo particular de diseño incompleto en el que la información sobre el tamaño de la población a riesgo (o población-tiempo expuesta), de la que surgieron los casos o muertes, no es conocida. Se han empleado prácticamente con exclusividad en el medio ambiente laboral, partiendo de la información contenida en los certificados de defunción. Desde Miettinen y Wang, en 1981, se insiste en que puede ser considerado un tipo especial de estudio de casos y controles (o de estudio transversal), en el que de forma típica se comparan los sujetos que han muerto por la enfermedad objeto de la investigación frente a una muestra de los sujetos que han fallecido por otras causas (o una muestra de todas las causas) durante el mismo período de tiempo.

Este tipo de diseños presentan como ventajas su economía y factibilidad (comunes a los estudios transversales y de casos y controles), siendo empleados con una gran frecuencia en epidemiología ocupacional. Por ello, es un método rápido para la generación de hipótesis. Entre sus inconvenientes, aparte de las propias de los estudios de casos y controles, se encuentran fundamentalmente los siguientes: no diferencia los factores pronósticos de una enfermedad de los factores de riesgo para la misma; (un problema inherente al estudio de la mortalidad); no se puede determinar sin información adicional si la exposición tiene un efecto sobre la enfermedad de interés, ya que no se observa la población a riesgo de desarrollar la enfermedad que da origen a las muertes que constituyen los grupos del estudio; es difícil determinar si la exposición que se investiga precedió a la enfermedad que condujo a la muerte, por seleccionar a sujetos ya fallecidos (esto último es común con los estudios de casos y controles que utilizan casos prevalentes, no así en los que han incorporado casos incidentes); y pueden existir problemas con una valoración exhaustiva y válida de las muertes (con frecuencia el diseño se inicia con los certificados de defunción), especialmente en lo que se refiere al reflejo de la exposición en el mismo.

Al largo del presente trabajo se revisarán diversos aspectos de este tipo de diseños, entre los que se incluyen: (a) los errores sistemáticos, con atención preferente al "efecto del trabajador sano"; (b) recuerdo de su análisis, que se expandirá antes para facilitar la comprensión de las características de los puntos siguientes; (c) los criterios de inclusión de las causas de muerte a ser estudiadas por este tipo de diseños, en las que la inferencia puede ser más válida; y (d) por razones de exposición, se revisarán también los criterios que deben reunir las enfermedades que dan lugar a muerte del grupo de referencia (que coinciden grosso modo con los criterios generales de selección de un estudio de casos y controles).

Sesgos: efecto del trabajador sano

En la exposición de este tipo de diseños es preceptivo comenzar por los errores sistemáticos, ya que gobiernan la interpretabilidad de los resultados y bastantes de las conclusiones que se realizan en el análisis de datos. Dentro de ellos, el más relevante en el conjunto de la epidemiología laboral es el "efecto del trabajador sano". Se produce por la menor mortalidad relativa (con respecto a la población general) de los sujetos que trabajan, y ocurre porque los individuos sanos son los que tienen más posibilidades de hacerse y de permanecer en su puesto de trabajo. Este fenómeno parece que fue reconocido por vez primera por Ogle en 1885. Monson, considera que es un problema de confusión típico, ya que viene condicionado por el nivel de salud. Fox y Collier, en una cohorte industrial británica, y con posterioridad Howe et al. en un 10% de la población laboral canadiense, destacan varios componentes en el mencionado efecto: la selección de los trabajadores de la población general, el tiempo de permanencia en el trabajo y la duración del seguimiento de la población total. En la selección de los trabajadores influye la edad a la que se comienza a trabajar, disminuyendo el propio cuando se adopta de forma cierta. El error introducido puede adoptar dos formas. Una primera ya comentada es transitoria, y disminuye con el tiempo; una segunda, que parece derivada de características individuales, bastante constantes a lo largo del tiempo, como la dieta u otros factores. Con respecto a la permanencia en el trabajo, el efecto es más notable en el primer quinquenio tras el inicio en la ocupación, y disminuye a partir de ese momento. En relación con la permanencia, hay que resaltar que el efecto del trabajador saludable persiste mientras se está trabajando. Su influencia decrece a partir del abandono de la ocupación, especialmente si el trabajador se retira antes de que la edad preceptiva, por lo que también se ha llamado "efecto del trabajador activo".

Howe et al. han señalado otros componentes, según sus resultados, aunque son menos relevantes: el diagnóstico diferencial entre las cohortes laborales y la población general, y la influencia en el momento de seleccionar el trabajo de factores de

Revisión

86
risgo de diversas enfermedades. La relación anterior se modifica por otras variables: el sexo (mucha más evidente en las mujeres que en los varones), las causas de muerte (dependiendo de las propias de cada industria), la edad (sin efectos claros), el tipo de ocupación (el sesgo es más notorio en las clases altas, profesionales y ejecutivos, que en las clases más bajas). Todos estos factores sugieren que es erróneo adoptar el método recomendado por Goldsmith\(^a\) para evitar la presencia de este sesgo: el ajuste de las razones estandarizadas de mortalidad por un factor constante (1,1).

En los estudios de mortalidad proporcional el punto más crítico es la condición básica de que cada persona incluida en el estudio debiera ser asignada a la misma categoría de exposición a la que hubiera sido asignada si hubiera participado en un estudio de seguimiento\(^\text{10}\). Tras la demostración en el certificado de defunción (en EE.UU.) de la presencia de una clasificación errónea importante de las exposiciones laborales\(^\text{11}\), se cuestiona el uso del certificado de defunción en este tipo de diseños. Esto no tiene porqué invalidar el tipo particular de análisis empleado en estos diseños, ya que puede ser realizado en otros diseños, o con otras fuentes de información (registros laborales, etc.), que tienen menos problemas de mala clasificación, siendo como son bastante más económicos que otros diseños\(^4\).

Tabla 1. Distribución hipotética de la población de origen de un estudio de mortalidad proporcional

<table>
<thead>
<tr>
<th></th>
<th>Muertos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Problema</td>
<td>Otros</td>
</tr>
<tr>
<td>Expuestos</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>No expuestos</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>(Población general)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Análisis

Razón de mortalidad proporcional estandarizada (RMPE)

Para comprender mejor el análisis, se partirá de la situación contemplada en la tabla 1, en la que se incluye la población en la que se producen los muertos. Considérese una población general, P, estable durante un período dado en el que se identifican todas las muertes, ya sean por la enfermedad-problema, ya sean por las restantes causas. Parte de esa población habrá estado sometida a la exposición P_i, mientras que el resto no, P₀. De esa manera, se conocen los denominadores para determinar las tasas de mortalidad específicas para nivel de exposición.

La tasa de mortalidad (TM) de la enfermedad problema para los expuestos (TM_i) será TM_i = a/P_i; la tasa de mortalidad en los no expuestos (TM₀) será TM₀ = c/P₀. De manera similar se pueden estimar las tasas de mortalidad de las enfermedades control en los grupos de expuestos y no expuestos, TM_i = b/P_i y TM₀ = d/P₀, y la tasa de mortalidad global, de todas las enfermedades, en ambos grupos: TM" = (a+b)/P_i y TM" = (c+d)/P₀.

En base a las tasas de mortalidad calculadas se puede estimar la razón de tasas de mortalidad (RTM) para la exposición investigada, tanto para la enfermedad problema como para las que constituyen el grupo control. Así la RTM para la enfermedad problema sería

$$RTM = \frac{TM_i}{TM_0} = \frac{(a/P_i)}{(c/P_0)}$$

(1)

la RTM de las enfermedades control (que llamaremos RTM")

$$RTM" = \frac{TM"_i}{TM"_0} = \frac{(b/P_i)}{(d/P_0)}$$

(2)

y la del total de enfermedades

$$RTM"" = \frac{TM"_i}{TM"_0} = \frac{(a+b)/P_i}{(c+d)/P_0}$$

(3)

Si se divide la RTM (1) por la RTM" (3) se obtendrá la ecuación siguiente

$$\frac{RTM}{RTM"} = \frac{(a/P_i)}{(c/P_0)} \times \frac{a(a+b)}{[(a+b)/P_i] / [(c+d)/P_0]}$$

$$\frac{RTM"}{RTM""} = \frac{(a/b)}{[(c+d)/P_0]}$$

(4)

que es la RMPE o razón de mortalidad proporcional estandarizada (SPMR, en inglés standardized proportionate mortality ratio), que resulta de dividir la proporción de muertes por la causa de interés observadas en los expuestos (a/(a+b)) por la proporción de muertes que serían esperadas teniendo en cuenta la distribución de la población de referencia (c/(c+d)). Sirvan de ejemplo el estudio de Sitans et al\(^\text{12}\), en el que se analizó la mortalidad por enfermedades respiratorias en los forjadores de hierro, o el análisis de mortalidad por tumores gastrointestinales en trabajadores expuestos a fluidos metálicos y abrasivos de Silverstein et al\(^\text{13}\).

Si se utiliza la RMPE, el estudio se analiza en realidad como un estudio de cohortes, aunque no se identifica a ninguna población expuesta\(^6,14\). El punto
del que parte este tipo de análisis es que si una exposición produce una determinada enfermedad letal habrá más muertes por tal exposición que en los no expuestos. Sin embargo, la RMPE no distingue si una determinada exposición problema es factor de riesgo o protector. Tan sólo se sabe que una exposición determinada se encuentra más representada en un grupo de causas de muerte que en otras. Al no conocer la proporción de personas expuestas en la población general de la cual se originaron esas muertes, es imposible concluir que la enfermedad esté favorecida por la exposición problema. Éste es el mayor inconveniente del análisis de mortalidad proporcional: al comparar proporciones, el número total de muertes observadas y esperadas han de ser idénticos, lo que motiva que un aumento observado para un tipo de causa necesariamente ha de ir acompañado por un descenso en otras. Éste es un fenómeno que depende de la frecuencia proporcional de la causa de muerte que se investiga. Si la causa es rara, por ejemplo la leucemia, el análisis puede ser válido; sin embargo, para causas frecuentes (Monson) la cifra en el 30% este tipo de análisis pierde su validez. Estos hechos han motivado que se prefiieran otros tipos de análisis.

El análisis de mortalidad proporcional se emplea rutinariamente cuando no hay información suficiente sobre la población de estudio para realizar el análisis de mortalidad estandarizada, normalmente cuando no se conoce las personas-ano de exposición en la población de estudio. La aproximación de la RMPE ignora el efecto del trabajador sano: al calcular las muertes esperadas por la causa de interés en el grupo de estudio en base a la proporción existente de las mismas en la población general, no es posible valorarlo. Ello implica que cuando este efecto no existe o es débil, su uso es más viable. Alegue que, según Checkoway et al., sucede cuando se analiza la distribución de enfermedades específicas dentro de categorías más amplias, en las que no sucede o es débil el efecto del trabajador sano, como el caso de tipos concretos de cáncer dentro del cáncer en su conjunto.

Tabla 2. Condiciones que permiten relacionar la Razón de Mortalidad Proporcional Estandarizada (RMPE) con otros parámetros

<table>
<thead>
<tr>
<th>Condición</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Las muertes sobre las que se basa un análisis de mortalidad proporcional surgen de poblaciones cerradas a lo largo del período de estudio.</td>
<td></td>
</tr>
<tr>
<td>2. Todas las muertes que ocurren en la población de interés dentro del período de estudio se incluyen en el análisis; o la muestra de las muertes incluida es representativa tanto de la causa de muerte como de la exposición.</td>
<td></td>
</tr>
<tr>
<td>3. Cualquier individuo fallecido se asigna a la misma categoría de exposición a la que hubiera pertenecido si hubiera sido incluido en un estudio de seguimiento cuando estaba vivo.</td>
<td></td>
</tr>
<tr>
<td>4. La valoración de la causa de muerte no depende del nivel de la exposición.</td>
<td></td>
</tr>
<tr>
<td>5. La tasa de mortalidad total y la tasa de mortalidad específica para la causa de interés son constantes a lo largo del período de tiempo considerado para la población índice y de referencia.</td>
<td></td>
</tr>
<tr>
<td>6. La condición 5 se cumple dentro de los estratos de edad típicamente empleados en el cálculo de la Razón de Mortalidad Estandarizada.</td>
<td></td>
</tr>
<tr>
<td>7. Dentro del grupo de comparación de gente fallecida, la frecuencia relativa de la causa de interés es constante a lo largo de la edad a la que se fallece.</td>
<td></td>
</tr>
<tr>
<td>8. Las estructuras de edad de las poblaciones índice y de referencia son idénticas.</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Hansen

Algebraicamente, se puede probar que la RME referida es igual a la RME:

\[RTM = \frac{TM_i}{TM_o} = \frac{a/P_1}{c/P_0} = \frac{a}{P_1/c/P_0} = RME \]

Igualmente, se puede probar que para la RMT' y para la RMT". Es decir, se tendrían tres RME: la de la enfermedad problema (RME), la del resto de enfermedades (RME') y la del total de mortalidad (RME"").

De la expresión (4) se deduce que

\[RMPE = \frac{RME}{RME'} \]

(4) (expresión ya anticipada por DeCoufiél et al.16). Para que la relación anterior sea válida, todos los parámetros han de referirse a poblaciones definidas, a todas las muertes que ocurran en las poblaciones en un periodo de tiempo especificado, y la población de estudio no debe diferir en gran medida de la población de referencia en la distribución etaria de las muertes totales y de la población-tiempo a riesgo (sobre todo si la RME" es no homogéneas a lo largo de los estratos de edad)15,16,18. Las condiciones sobre las que se puede establecer una relación entre la RMPE y la RME han sido recientemente revisadas por Hansen (Tabla 2). Han de cumplir las condiciones 1 a 4, 6, y la 7 o la 8.
De la expresión (5) se puede concluir que el análisis de mortalidad proporcional aporta una estimación no sesgada de la RMPE para la causa de muerte problema si la mortalidad global de los expuestos no difiere de la población general. Este último hecho, si se cumple, implica la ausencia del "efecto del trabajador sano". En caso contrario, la presencia de este sesgo (RMPE < 1) implicaría que la RMPE es un estimador sesgado por exceso de la RMPE.

A pesar de ser preferida la RME a la RMPE, por las deficiencias ya señaladas de esta última, Park et al.19, han realizado una comparación entre ambos parámetros a lo largo de 109 cohortes industriales en 90 estudios de mortalidad publicados en revistas de la especialidad entre 1981 y 1987. Resultó que la RMPE fue un estimador menos sesgado que la RME: sobrestimó la mortalidad por cáncer en un 6% (mientras que la RME la infraestimó en un 13%) e infraestimó la mortalidad por enfermedades respiratorias no malignas en un 16% (y la RME lo hizo en un 30%). Estos resultados empíricos comprueban el aserto matemático realizado por varios autores14,15 acerca de la sobrestimación de la RMPE sobre la RME (aunque los autores mencionados utilizaron ese argumento para favorecer el uso de otras medias). Esto cuestiona la práctica de calcular RMEs sin la realización de comparaciones internas, y favorece la opinión, emitida por varios autores, que la RMPE puede corregir parcialmente la no comparabilidad entre cohortes y poblaciones de referencia14,26. Con respecto a las comparaciones internas, tampoco se puede olvidar que la RME de diferentes poblaciones no son comparables, ya que no están basadas en una distribución común del factor por el que se estratifica5. La estandarización indirecta puede ajustar simultáneamente por otras covariables y aunque se ha creído que la estimación no está sesgada si el efecto conjunto de la exposición y las covariables es multiplicativo, Greenland20 ha demostrado que este aserto es falso y que el sesgo se puede producir incluso en esas condiciones. Estos últimos hechos subrayan aún más que la preferencia demostrada en la literatura epidemiológica laboral por la RME frente a la RMPE no es del todo acertada.

Relación de la RMPE con otros parámetros

Al igual que, bajo ciertas condiciones, se puede establecer una relación entre la RMPE y la RME (expresión 5), existe una conexión entre la RMPE y el riesgo relativo de muerte y la razón de tasas de mortalidad. A la hora de derivar la ecuación de la mortalidad proporcional (expresión 4) se partió de la relación que mantiene la RMPE con la razón de tasas de mortalidad (RTM). Sin embargo, no se mencionaron entonces las condiciones bajo las cuales esa relación es válida. Ha de cumplir los asertos 1 a 5 que figuran en la tabla 2.

Al igual que con la RME y con la RTM, también es posible establecer una relación entre la RMPE y el riesgo relativo de mortalidad (RRM), que adoptaría la forma10:

\[
\text{RMPE} = \frac{\text{RRM}}{\text{RRM}^*}
\]

(6)

en la que RRM es el riesgo relativo de mortalidad para la causa de interés y RRM* es el riesgo relativo de mortalidad para todas las causas. Las condiciones bajo las cuales la expresión 6 es válida son las cuatro primeras de la tabla 2.

Análisis de los estudios de mortalidad proporcional como si fueran un diseño de casos y controles

Las deficiencias notadas en la RMPE, ya comentadas llevaron a Miettinen y Wang21 a proponer otro tipo de análisis: la razón de ventaja o desigualdad relativa (OR u odds ratio en inglés), que resulta de dividir la RTM (ecuación 1) por la RTM* (ecuación 2):

\[
\text{RTM} = \frac{(a/bP_1)}{(c/dP_2)} = \frac{ad}{bc} = \text{OR}
\]

(7)

Mediante el uso de la OR el análisis es similar al de un estudio de casos y controles24, con la salvedad de que se estudian muertos. Un ejemplo de este tipo de análisis puede encontrarse en el trabajo de Levi et al22 en su análisis de los grupos socioeconómicos y el riesgo de cáncer en un cantón suizo. La verdadera diferencia estriba en que, en un estudio de casos y controles, el grupo de referencia intenta representar a la población de la cual se han originado los casos: busca obtener una aproximación adecuada a la frecuencia de la exposición en la población general de la que se generan23. La OR se aproxima a la RTM para la causa de interés, cuando la RTM* para las causas de muerte del grupo de referencia no se relaciona con la exposición que se investiga. La relación entre la OR y la RTM es válida si se cumplen las condiciones 1 a 5 que figuran en la tabla 2.

Análisis multivariable

El análisis de regresión logística también puede ser utilizado para el análisis de datos de mortalidad proporcional, para estimar la RME o la RMPE24. Sin embargo, dado que en el momento presente plantea que este tipo de diseños es más eficiente si se
considera como un estudio de casos y controles, puede ser aplicable el análisis de regresión logística no condicional convencional29. Un diseño de este tipo, con comparación interna, no estará sujeto al efecto de sesgo del trabajador sano, que se produciría si se compararan las razones de mortalidad con las de una población general. Recogiendo el trabajo de otros autores, Robins y Blevins25 afirman que un análisis de casos y controles apareados por edad y año de la muerte, siempre y cuando la exposición no esté relacionada con el grupo de referencia, puede proporcionar estimaciones válidas del riesgo relativo (o de la razón de tasas). Una alternativa igualmente válida, según estos autores, es introducir ambas variables en un modelo de regresión logística, lo que además permitiría probar si el efecto del trabajador sano se mantiene constante a lo largo de cada edad y periodo del calendario. También se podría introducir en la ecuación del modelo un término que intente controlar otro de los fenómenos del trabajador sano: el descenso que sufre su influencia conforme aumenta el tiempo transcurrido tras la incorporación al trabajo25. Sin embargo, no sería correcto el corregir mediante este tipo de análisis el efecto del trabajador sano superviviente, producido por la mortalidad experimentada por los sujetos que abandonan el trabajo antes de la edad del retiro con respecto a los que tienen su misma edad y continúan en su ocupación. Este efecto vendría medido por la variable "tiempo transcurrido desde la última vez que trabajó". Esta variable sería un factor de riesgo de los fenómenos de mortalidad independientes, y a la vez intermedio en la exposición ocupacional de interés, ya que los individuos que abandonan el trabajo no permanecen más tiempo expuestos. El análisis de variables como éstas, factores de riesgo independientes que simultáneamente son variables intermedias en la producción del efecto de la variable de interés, requiere una aproximación analítica especial25: el cálculo del algoritmo de computación G, descrito por Robins28,27, diseño de casos y controles25,26. Wacholder et al26 establecen las condiciones de selección del grupo de referencia en los estudios de casos y controles. Sus principios generales (principio del estudio base, "de confusión", precisión comparable, eficiencia) pueden ser aplicados a este tipo de diseños. De acuerdo con el primer principio (base del estudio), no hay sesgo de selección cuando la probabilidad de selección depende de un factor que no está relacionado con la exposición. En este sentido, el trabajo de Pierce y Checkoway28, en el que se intenta comprobar que la exclusión de enfermedades relacionadas con la exposición diaria en algunas situaciones un sesgo, puede suponer una alteración de ese principio básico, produciéndose un sesgo de selección. No obstante, los estudios de mortalidad proporcional se incardinan más en una base secundaria de estudio que en una primaria. De acuerdo con Miettinen28,29, la base en los estudios de mortalidad proporcional viene definida por la fuente de los casos (un registro de mortalidad es el más frecuente). Cuando se utiliza una base secundaria, como es el caso anterior, se suele asumir y también con frecuencia es más conveniente que la exposición no ha de estar relacionada con la incorporación de sujetos del grupo de referencia29.

La adherencia al segundo de los principios mencionados (precisión comparable en la obtención de la información) es más fácilmente alcanzada cuando se eligen controles muertos que vivos. Sin embargo, como indican Wacholder et al28, esto no tiene por qué evitar, ni siquiera reducir, el sesgo de mala clasificación que se introduce con esta fuente.

La elección de controles muertos viola el principio de base del estudio28, ya que la base está formada por sujetos vivos y los que mueren representan una muestra especial de la base. Para que se representen a la base, se ha de asumir que la distribución de la exposición en la serie de referencia es similar a la de la base. Aunque no referido al medio laboral, donde se suelen ubicar los estudios de mortalidad proporcional, McLaughlin et al28, tras la comparación de dos grupos de controles entre sí (vivos y muertos), han comprobado que la frecuencia de consumo de tabaco, alcohol, y drogas era más frecuente en los muertos que en los vivos; igualmente sucedía con el número de patologías en la etapa adulta (cirrosis, cardiovasculares y diabéticos). En un artículo posterior29, los mismos autores, utilizan criterios de exclusión de ciertas causas de muerte para valorar si se puede alcanzar una muestra representativa de la base poblacional del estudio. Curiosamente, aún excluyendo toda la patología relacionada con el tabaco, este seguía sobrerepresentado en los muertos. Con respecto

Selección de los grupos participantes

Selección del grupo de referencia

El análisis de mortalidad proporcional puede realizarse en un estudio de cohortes. Recuérdese el artículo de Park et al19, comentado con anterioridad, en el que se compararon la RMPE y RME. No obstante, en el momento presente, la mayor parte de los autores insisten en que el diseño específico de mortalidad proporcional es un caso particular del
a otras exposiciones, la exclusión y el ajuste por factores de confusión conseguida eliminar el sesgo. Los estudios de mortalidad proporcional se utilizan en el ámbito laboral y no para valorar la repercusión de factores ligados con el estilo de vida, como los mencionados. No obstante, los resultados anteriores tienen interés en el medio laboral, ya que con frecuencia existen interacciones entre factores del estilo de vida y afecciones ocupacionales (por ejemplo, tabaco y asbesto en el cáncer de pulmón). Si el tabaco está elevado en su frecuencia en el grupo de referencia puede conducir a una infravaloración de la exposición en estudio.

Según Miettinen, se han de eliminar los controles fallecidos por enfermedades relacionadas con la exposición de interés. La misma postura es sostenida por Wacholder et al. y Greenland. No obstante, Pearce y Checkoway mantienen que la exclusión de enfermedades del grupo de referencia puede conducir a estimaciones sesgadas (algo que es conocido como sesgo de exclusión), una forma de sesgo de selección. En la primera parte de su ejemplo muestran toda la población de la base (lo que supone un ejemplo de estudios de casos-base (nomenclatura de Miettinen) o estudios de casos-cohortes), que no es aplicable a los diseños que se discuten. Por el contrario, en la segunda parte del primer ejemplo, asumiendo que la población es fija, de que se parte de un estudio basado en un registro y muestreado sólo enfermos (más aplicable a los estudios de mortalidad proporcional), llegan a la conclusión ya conocida de que es mejor muestrear las enfermedades no relacionadas con la exposición de interés. Su segundo ejemplo es más complejo, ya que existe un fenómeno de relación entre la exposición con una enfermedad distinta en cada uno de los grupos no expuestos. Los propios autores critican este segundo ejemplo y defienden su posible frecuencia en la situación real. Pero como ellos mismos reconocen, a priori no se puede saber si en situación nos encontramos, si ante el ejemplo 1 o 2. Dado que el posible sesgo introducido en su segundo ejemplo por la exclusión de patología relacionada con la exposición puede ser neutralizado fácilmente en el análisis tras ajustar por los factores de riesgo de la enfermedad control, es más rentable excluir la patología que se supone relacionada con la exposición de interés, y tener en mente la posibilidad de tener que analizar el estudio ajustando por los factores determinantes de la enfermedad de referencia.

Además, teniendo en cuenta las ecuaciones comentadas con anterioridad (especialmente la (7), el cálculo de la OR se aproxima a la RTM, si las muertes de referencia no se asocian con la exposición. Esto equivale a afirmar que no existe el conocido sesgo del efecto del trabajador sano en la cohorte. Si la condición anterior se cumple, la razón de tasas de mortalidad en los muertos control (RTM') será igual a uno, por lo que la OR será igual a la razón de tasas de mortalidad para las muertes debidas a la enfermedad diaria (RTM).

Selección de casos adecuados

La calidad de la inferencia también recae en las enfermedades de interés. En la media en que la RTM se aproxima a la razón de densidades de incidencia (RTI), la OR será un estimador más o menos sesgado de la relación entre una exposición y una enfermedad, siempre y cuando se cumpla el requisito de un grupo de referencia adecuado. La discusión de los procesos susceptibles de ser investigados mediante los diseños que nos ocupan se articulará alrededor de los criterios que permiten aproximar la tasa de mortalidad (MT) a la tasa de incidencia (TI). La TM es función de la TI, la duración media de la enfermedad (T) y la tasa de letalidad (TL), siguiendo los principios de Morrison y siempre que se cumplan los criterios de estado estable en la población de estudio. Esto adquiere la formulación siguiente:

\[
\text{TM} = \frac{\text{T}_I \cdot T \cdot \text{TL}_I}{\text{T}_I \cdot T + 1} \tag{8}
\]

En base a la ecuación 8 se puede sustituir las tasas de mortalidad en los expuestos (TM1) y en los no expuestos (TM2):
siendo RTI la razón de tasas (densidades) de incidencias: $\frac{T_{11}}{T_{10}}$.

Si $T_{11} > T_{10}$, esto es, la exposición es un factor de riesgo, o si $T_{11} < T_{10}$ (factor protector), la razón de tasas de mortalidad será siempre inferior a la RTI, con lo que se comete un sesgo negativo o hacia el valor nulo, más importante cuanto mayor sea la duración de la enfermedad38. El hecho de cometer un sesgo negativo (encontrar un valor de asociación inferior al real) no invalida los resultados obtenidos, si éstos han sido significativos: el valor alcanzado puede ser considerado como un umbral inferior de la estimación. Normalmente, los errores por defecto, como el comentado, son más aceptables que los producidos por exceso o aquéllos de los que se desconoce su sentido.

Con independencia de la exposición sea o no un factor pronóstico, se considerará a continuación la circunstancia de que la enfermedad diana sea irreversible. En esta situación, la tasa de letalidad es igual al reverso de la duración media de la enfermedad38,39: $T_{L} = 1/T$, de lo que deriva que $T_{L} \cdot T = 1$. Esto se produce tanto en los expuestos como en los no expuestos. Sustituyendo la expresión de la tasa de mortalidad cuando la enfermedad es irreversible en la ecuación 8, se obtiene:

$$RTM = \frac{T_{11} \cdot T_{11} + 1}{T_{10} \cdot T_{10} + 1} = RTI$$

El sesgo introducido en estos casos es positivo cuando la RTI es pequeña (alrededor de 1,5) y la influencia pronóstica de la exposición acorta la duración media de la enfermedad al menos en un 60%.

Para RTI entre 1,5 y 3 el sesgo sólo es positivo cuando el acortamiento de la enfermedad es al menos del 50%. Para RTI superiores a 4, el sesgo es positivo cuando la duración de la enfermedad en los expuestos es del 10-20% de la de los no expuestos. Lo anterior se traduce en que normalmente el sesgo producido es negativo.

Si la exposición no es además un actor pronóstico se alcanza una situación similar a la de la ecuación 10. Los comentarios son los mismos que en aquel caso: el sesgo que se comete es siempre negativo.

Si la enfermedad es rara, la tasa de incidencia es muy próxima a cero, lo que se traduce en que $T_{L} \cdot T$ es aproximadamente cero y el denominador de la tasa de mortalidad es prácticamente la unidad. En esta situación la RTM será igual a:

$$RTM = \frac{T_{11} \cdot T_{10} \cdot T_{L}}{T_{10} \cdot T_{0} \cdot T_{L}} = RTI$$

Si además de ser rara la enfermedad la exposición no es un factor pronóstico ($T_{11} = T_{3}, T_{L} = T_{L_{0}}$), la RTM es exactamente igual a la RTI, ya que la expresión (12) se simplificará.

Si la enfermedad es rara e irreversible, la RTM es igual a la RTI, con independencia de que la exposición sea o no un factor pronóstico ya que la tasa de mortalidad coincide con la de incidencia.

De todo lo anterior se deduce que una vez que los controles cumplen el criterio de no relacionarse con la exposición, el hecho más importante a tener en cuenta en la selección de los casos, aparte de la irreversible de la enfermedad, es que la exposición que se investiga no sea un factor pronóstico de la enfermedad diana.

Bibliografía