ANÁLISIS GEOGRÁFICO DE LA INCIDENCIA DE CÁNCER EN LA COMUNIDAD AUTÓNOMA DEL PAÍS VASCO

Xabier Etxepe Uriarte1/ Elena Aldasoro Unamuno2/ Lourdes Pozueta Fernández2
1Departamento de Sanidad. Gobierno Vasco. 2Departement d'Estadística o Investigación Operativa. E.T.S.E.I.B.
Universidad Politécnica de Catalunya

Resumen
Con el objetivo de mejorar el conocimiento de la distribución geográfica de los tumores malignos en la Comunidad Autónoma del País Vasco (CAPV), se analizaron las tasas de incidencia estandarizadas por edad de los 13 tipos de cáncer más frecuentes en cada sexo, en relación con las 27 comarcas geográficas en las que se subdividió la Comunidad. Para la realización de este estudio descriptivo de ámbito poblacional se utilizó el Análisis Factorial de Correspondencia (AFC).

Reteniendo los dos primeros factores se explicaba en los hombres el 42% de la varianza y en las mujeres el 40%. El principal hallazgo en el sexo masculino fue la gran desigualdad existente entre Álava Rural y la Zona Minera de Bizkaia. Esta última se caracterizaba por las neoplasias de ganglios linfáticos y de laringe, y la primera por tumores pancreáticos, los prostáticos y los de tejido hematopoyético. Se apreció además un patrón geográfico caracterizado por la diferencia entre las comarcas costeras y las de interior. Este mismo patrón fue el resultado más relevante en las mujeres, siendo responsables de la tendencia constante el cáncer de cavidad oral, el melanoma de la piel y las leucemias, y de la tendencia interior el de vesícula biliar, pulmón y estómago.

Los hallazgos del estudio confirmaban el interés del AFC como método exploratorio y pueden motivar a otros investigadores a utilizarlo con más frecuencia.

Introducción
El conocimiento actual sobre la etiología de las neoplasias malignas apunta a que estas se deben principalmente a factores ambientales, y que hábitos diferentes en estilos de vida, nutrición, consumo de alcohol y tabaco pueden determinar desigualdades espaciales en la incidencia del cáncer. El estudio de su distribución geográfica resulta por ello cada vez más interesante en la investigación de esta patología.

Proyecto financiado por una ayuda de la Dirección de Información. Docencia e Investigación Sanitaria del Departamento de Sanidad del Gobierno Vasco.
Este artículo fue recibido el 30 de agosto de 1993 y fue aceptado tras revisión el 22 de junio de 1994.

Gac Sanit 1994; 8: 222-226

ORÍGENALES

222
En nuestro medio, la existencia del Registro de Cáncer de Euskadi, que viene recogiendo información sobre incidencia de tumores malignos en la Comunidad Autónoma del País Vasco (CAPV) desde el año 1986, ha facilitado la realización de varios trabajos descriptivos1-3. Hasta el momento, los trabajos realizados, tanto con datos de incidencia como de mortalidad4, se han limitado a los ámbitos de comunidad autónoma y de territorio histórico, pero no se han descrito áreas más pequeñas como las comarcas. La ventaja de describir grandes áreas geográficas radica en aportar más estabilidad a las tasas, y su mayor inconveniente no es que no se pueda generalizar la homogeneidad sociodemográfica y ambiental de las áreas que se describen5. Con el fin de superar el inconveniente anterior, nuestro estudio pretendía detallar la distribución geográfica del cáncer por áreas (comarcas) y así obtener un conocimiento más preciso de su incidencia en nuestra Comunidad.

Para ello, además de realizar la descripción geográfica habitual que generalmente investiga cada localización tumoral por separado, decidimos utilizar en primer lugar un método multivariante (Análisis Factorial de Correspondencias) que permitiera descubrir la existencia de patrones de cáncer, considerando simultáneamente todos los tumores a estudio en el mismo análisis estadístico6.

Sujetos y métodos

El Registro de Cáncer de Euskadi (RCE) (los indicadores de calidad de este registro se encuentran dentro de los límites aceptados como recomendables. Es un registro de tumores de base poblacional que cubre todo el ámbito de la CAPV con sus tres territorios históricos, Álava, Bizkaia y Gipuzkoa. El material que proporcionó ese registro fue las tasas de incidencia de tumores malignos estandarizadas por edad con la población promedio anual de la CAPV en el trienio 1986-1988. Estas tasas se hallaban distribuidas por sexo, localización anatómica codificada según la Clasificación Internacional de Enfermedades para Oncología (CIE-O)7 y comarca (referida más abajo). El registro definía un caso nuevo como "todo tumor maligno diagnosticado por primera vez durante los años del estudio en cualquier persona residente en la CAPV". No se incluyeron como casos los tumores malignos in situ, los de malignidad límite y todos los de piel que no eran melanomas. Así pues, cada vez que se cite en el texto el término "tumor", se referirá únicamente a tumores malignos invasivos.

Se eligieron para el análisis las 13 primeras localizaciones más frecuentes en cada sexo y se decidió descartar el hígado (en varones), por la baja calidad que presentan generalmente los datos de este tumor en los registros de cáncer9 (Tabla 1).

La unidad geográfica elegida para la descripción fue la comarca, cuya definición se regula en el artículo 3 del Decreto 14/1988 del Departamento del Trabajo y Seguridad Social10. Las 32 comarcas aquí determinadas se redujeron a 27 (Tabla 2), tras la agrupación de las comarcas Rioja Alavesa, Llanada Alavesa, Estribaciones del Gorbea, Valles Alaveses y Montaña Alavesa bajo el epígrafe Álava Rural, y la agrupación de Bilbao a la comarca Txorierri.

La población total del País Vasco según el Padron de 1986, era de 2.136.100 habitantes (1.053.935 varones y 1.082.165 mujeres) distribuidos en una superficie de 7.261 Km². Bizkaia concentra el 55,1% del total de habitantes, Gipuzkoa el 32,3% y Álava únicamente el 12,6%. Tanto el territorio de Bizkaia como el de Gipuzkoa y el de Álava únicamente el 12,6%. Tanto el territorio de Bizkaia como el de Gipuzkoa integran comarcas de costa y de interior, al contrario de lo que ocurre en Álava, donde todas las comarcas son interiores. Los principales núcleos industriales se encuentran en el cinturón de Bilbao, en diferentes puntos de Gipuzkoa y en la zona de Álava que limita con Bizkaia, siendo además áreas densamente urbanizadas. Las zonas restantes se caracterizan por un catéter más rural, si bien en nuestra comunidad, la calificación de rural es preciso considerarla en términos relativos, puesto que, siendo estrictos, solamente la comarca Álava Rural respondería al concepto tradicional del vocablo.

Se utilizó el Análisis Factorial de Correspondencias (AFC) como método descriptivo y exploratorio, incluyendo en las filas las comarcas, y en las columnas la localización anatómica de cáncer. Así, una celda de la matriz era la tasa de incidencia estandarizada de determinada localización para determinada comarca. Se estudiaron por separado los varones y las mujeres. El citado análisis se realizó por medio del paquete estadístico S.A.S. (versión 6.04)11,12.

El interés del Análisis Factorial de Correspondencias como método exploratorio radica en que consigue resumir, gracias a la creación de variables sintéticas (factores), la información de una tabla de frecuencias, permitiendo no solamente traducir la asociación o independencia entre dos variables, sino también analizarlas simultáneamente y establecer relaciones entre sus categorías.

Así, se pueden resaltar las categorías más parecidas de una variable, aquellas que poseen un perfil similar, las que más se diferencian y los pares de
<table>
<thead>
<tr>
<th>CIE-O</th>
<th>Abreviaturas</th>
<th>Localización anatómica</th>
<th>Nº casos</th>
<th>Tasas de incidencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-149</td>
<td>Orf</td>
<td>Cavidad oral y faringe</td>
<td>924</td>
<td>29,2</td>
</tr>
<tr>
<td>150</td>
<td>Esof</td>
<td>Esófago</td>
<td>259</td>
<td>11,4</td>
</tr>
<tr>
<td>151</td>
<td>Esto</td>
<td>Estómago</td>
<td>920</td>
<td>29,1</td>
</tr>
<tr>
<td>153-154</td>
<td>Colr</td>
<td>Colon-recto</td>
<td>1.053</td>
<td>33,3</td>
</tr>
<tr>
<td>157</td>
<td>Panc</td>
<td>Páncreas</td>
<td>161</td>
<td>5,1</td>
</tr>
<tr>
<td>161</td>
<td>Lari</td>
<td>Laringe</td>
<td>701</td>
<td>22,2</td>
</tr>
<tr>
<td>162</td>
<td>Pulm</td>
<td>Tráquea, bronquios y pulmón</td>
<td>1.804</td>
<td>57,1</td>
</tr>
<tr>
<td>169</td>
<td>Hema</td>
<td>Tej. hematopoyético y reticular</td>
<td>236</td>
<td>9,4</td>
</tr>
<tr>
<td>185</td>
<td>Pros</td>
<td>Próstata</td>
<td>556</td>
<td>17,6</td>
</tr>
<tr>
<td>188</td>
<td>Veji</td>
<td>Vejiga urinaria</td>
<td>915</td>
<td>29,9</td>
</tr>
<tr>
<td>189</td>
<td>Riñ</td>
<td>Riñón y otros órganos urinarios</td>
<td>261</td>
<td>8,3</td>
</tr>
<tr>
<td>191-192</td>
<td>SNer</td>
<td>Encéfalo y otras del s. nervioso</td>
<td>182</td>
<td>5,8</td>
</tr>
<tr>
<td>196</td>
<td>GIL</td>
<td>Ganglios linfáticos</td>
<td>228</td>
<td>7,2</td>
</tr>
</tbody>
</table>

N (% del total de casos de cáncer) 8.360 (86%)

<table>
<thead>
<tr>
<th>CIE-O</th>
<th>Abreviaturas</th>
<th>Localización anatómica</th>
<th>Nº casos</th>
<th>Tasas de incidencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>140-149</td>
<td>Orf</td>
<td>Cavidad oral y faringe</td>
<td>137</td>
<td>4,2</td>
</tr>
<tr>
<td>151</td>
<td>Esto</td>
<td>Estómago</td>
<td>494</td>
<td>15,2</td>
</tr>
<tr>
<td>153-154</td>
<td>Colr</td>
<td>Colon-recto</td>
<td>765</td>
<td>23,6</td>
</tr>
<tr>
<td>156</td>
<td>VesH</td>
<td>Vesícula y cond. extrahepáticos</td>
<td>158</td>
<td>4,9</td>
</tr>
<tr>
<td>162</td>
<td>Pulm</td>
<td>Tráquea, bronquios y pulmón</td>
<td>142</td>
<td>4,4</td>
</tr>
<tr>
<td>169</td>
<td>Hema</td>
<td>Tej. hematopoyético y reticular</td>
<td>226</td>
<td>7,0</td>
</tr>
<tr>
<td>173</td>
<td>Mel</td>
<td>Melanoma de la piel</td>
<td>146</td>
<td>4,5</td>
</tr>
<tr>
<td>174</td>
<td>Mam</td>
<td>Mama</td>
<td>1.716</td>
<td>52,9</td>
</tr>
<tr>
<td>180</td>
<td>Cerv</td>
<td>Cuello de tiroides</td>
<td>215</td>
<td>6,6</td>
</tr>
<tr>
<td>182</td>
<td>Cuer</td>
<td>Cuerpo de tiroides</td>
<td>357</td>
<td>11,0</td>
</tr>
<tr>
<td>183</td>
<td>Ovar</td>
<td>Ovario</td>
<td>251</td>
<td>7,7</td>
</tr>
<tr>
<td>191-192</td>
<td>SNer</td>
<td>Encéfalo y otras del s. nervioso</td>
<td>130</td>
<td>4,0</td>
</tr>
<tr>
<td>196</td>
<td>GIL</td>
<td>Ganglios linfáticos</td>
<td>189</td>
<td>5,8</td>
</tr>
</tbody>
</table>

N (% del total de casos de cáncer) 4.926 (80%)

* x 100.000 habitantes.

Categorías de las variables fila y columna que se suelen dar conjuntamente.

En las representaciones gráficas las categorías de cada variable se disponen alrededor del centro de gravedad de una distancia inversamente proporcional a su frecuencia y además, las categorías similares aparecen próximas. Sin embargo, hay que destacar que las proximidades entre categorías se evalúan siempre en comparación con el perfil de la media (origen del gráfico o centro de gravedad) y que por consiguiente la interpretación es más significativa en los extremos del gráfico ya que las categorías cercanas a este origen determinan la media13-16.

Se consideró que existía una tendencia cuando diversas comarcas con similitud geográfica mostraban un comportamiento semejante con respecto a uno o varios tumores malignos. En un AFC, se está ante un hallazgo de estas características cuando se observa una acumulación de comarcas geográficamente semejantes (y los tumores malignos que les caracterizan) a un lado del eje que determina un factor. En tal caso, se puede decir que dichas comarcas "marcan tendencia". Igualmente, se definen como comarcas que "no marcan tendencia" aquellas que presentando similitud geográfica con las comarcas anteriormente referidas, se sitúan en el lado opuesto del eje pero próximas al centro de gravedad, y "contrarias a tendencia" (referidas también en el texto como excepciones marginales) cuando se localizan alejadas de dicho centro, puesto que ello implica que comparten la conducta de las comarcas antagónicas. Para facilitar la percepción visual de los resultados obtenidos en el AFC se plasmaron éstos en forma de mapas, utilizando tramas diferentes en función del tipo de comarca.

Resultados

Se estudiaron un total de 13.286 casos tumorales, de los cuales 8.360 se diagnosticaron en hombres y los 4.926 restantes en mujeres.
Tabla 2. Comarcas de la CAPV distribuidas por territorio histórico

<table>
<thead>
<tr>
<th>Territorio histórico</th>
<th>Abreviatura</th>
<th>Nombre de la comarca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Álava</td>
<td>Aly¹</td>
<td>Álava Rural</td>
</tr>
<tr>
<td></td>
<td>Aye¹</td>
<td>Valle de Álava</td>
</tr>
<tr>
<td></td>
<td>Vit¹</td>
<td>Villarta-Goieiz</td>
</tr>
<tr>
<td>Gipuzkoa</td>
<td>Aoe²</td>
<td>Alto Deba</td>
</tr>
<tr>
<td></td>
<td>Bde²</td>
<td>Bajo Deba</td>
</tr>
<tr>
<td></td>
<td>Gof¹</td>
<td>Goierri</td>
</tr>
<tr>
<td></td>
<td>Uro²</td>
<td>Urola Garaia</td>
</tr>
<tr>
<td></td>
<td>Urm²</td>
<td>Urola Medio</td>
</tr>
<tr>
<td></td>
<td>Tol¹</td>
<td>Tolosaldea</td>
</tr>
<tr>
<td></td>
<td>Dsl²</td>
<td>Donostiaide</td>
</tr>
<tr>
<td></td>
<td>Den²</td>
<td>Donostia-San Sebastián</td>
</tr>
<tr>
<td></td>
<td>Bid²</td>
<td>Bidasoa</td>
</tr>
<tr>
<td></td>
<td>Ola²</td>
<td>Oiartzaldea</td>
</tr>
<tr>
<td></td>
<td>Kos²</td>
<td>Kestaldea</td>
</tr>
</tbody>
</table>

Bizkaia

<table>
<thead>
<tr>
<th>Territorio histórico</th>
<th>Abreviatura</th>
<th>Nombre de la comarca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lea²</td>
<td>Lea-Artibai</td>
</tr>
<tr>
<td></td>
<td>Bus²</td>
<td>Busturiaide</td>
</tr>
<tr>
<td></td>
<td>Dut²</td>
<td>Duranguesado</td>
</tr>
<tr>
<td></td>
<td>Zor²</td>
<td>Arratia-Zornotza</td>
</tr>
<tr>
<td></td>
<td>Ar²</td>
<td>Arrigorriaga</td>
</tr>
<tr>
<td></td>
<td>Iba²</td>
<td>Itxalabal</td>
</tr>
<tr>
<td></td>
<td>Gez²</td>
<td>Gezho</td>
</tr>
<tr>
<td></td>
<td>Ur²</td>
<td>Uribidea</td>
</tr>
<tr>
<td></td>
<td>Bl²</td>
<td>Xuorterri</td>
</tr>
<tr>
<td></td>
<td>Bar²</td>
<td>Barakaldo</td>
</tr>
<tr>
<td></td>
<td>San²</td>
<td>Santurtzi</td>
</tr>
<tr>
<td></td>
<td>Min²</td>
<td>Zona Minera</td>
</tr>
<tr>
<td></td>
<td>Enc²</td>
<td>Encartaciones</td>
</tr>
</tbody>
</table>

¹Comarca interior.
²Comarca de la costa.

Por su parte el factor 2, o eje horizontal, separaba las comarcas de la zona costera de las del interior. Las comarcas de la costa, salvo Bidasoa (única excepción marginal), eran coordenadas positivas del eje. En el mismo lado que Bidasoa se situaban Donostia-San Sebastián, Bajo Deba, Txorierri, Barakaldo y Santurtzi, pero su posición era cercana al valor cero. Las del interior se situaban en el lado opuesto del eje de coordenadas negativas, a excepción de Arrigorriaga. También se presentaban como excepciones de este patrón Arratia-Zornotza, Tolosaldea, Encartaciones y Valle de Álava, sin embargo se situaban muy cerca del valor cero del factor, por lo que no constituían excepciones verdaderamente marginales. Este patrón costa-interior se representa en forma de mapa en la figura 3 (las áreas que aparecen en blanco corresponden a Treviño y Trucios, y no pertenecen a la CAPV). Volviendo al gráfico de la figura 1 pudimos observar cómo las comarcas costeras se relacionaban con los tumores de esófago, ganglios linfáticos y sistema nervioso, y a su vez la del interior con los de vejiga urinaria, laringe y estómago. Los tumores del área positiva presentaban posiciones más extremas que los del lado opuesto, por tanto la tendencia se apreciaba más marcada en la zona costera. Todo lo anteriormente expuesto podría indicar que las comarcas de la zona costera presentaban una alta tasa de incidencia de los tres primeros tumores arriba citados en relación a la zona interior, caracterizada por el predominio de los tres últimos con respecto a la costa.

Fuente: Registro de Cáncer de Euskadi.

Hombres

Los dos primeros factores (dimensiones) del Análisis de Correspondencias (Fig. 1) condensaban respectivamente el 24,6% y el 18,6% de la variabilidad presentada en los datos y ambos juntos el 42,2%. Globalmente, mientras el factor 1 señalaba diferencias geográficas importantes pero puntuales para ciertas comarcas aisladas y determinados tumores, el segundo reflejaba un patrón general caracterizado por la tendencia costa-interior.

En concreto el factor 1, o eje vertical en la figura, marcaba la desigualdad entre Álava Rural (y con menos fuerza Arratia-Zornotza, Urola Medio y Lea-Artibai) y la Zona Minera de Bizkaia. Si bien las primeras se mostraban proclives a las neoplasias de páncreas, próstata y tejido hematopoyético, la lejanía de la segunda comarca traducía su poca afinidad por dichos tumores y su asociación con los de ganglios linfáticos y laringe.
Esta diferenciación se debía principalmente a la marcada contraposición entre las comarcas de Urola Garaia y Donostialdea. La primera aparecía significativamente caracterizada en la zona interior, y la segunda en la zona costera.

Analizando las distancias diagonalmente, observamos que las zonas de Urola Garaia, Duranguesado y Bidasoa, sobresalían como centros directamente relacionados con los tumores de vejiga urinaria. Hacia abajo, las de Barakaldo, Santurtzi y Txorierri (BIL) manifestaban su preferencia por los de vejiga urinaria y laringe. A su vez, todas ellas mostraban poca inclinación por el cáncer de esófago, el de páncreas y el de tejido hematopoyético. Las zonas de Lea-Artibai, y quizás Uribealdea, eran las más propensas a estos últimos tumores.

Por otro lado, destacaban por su proximidad en el gráfico, Vitoria-Gasteiz, Goierri, Donostia-San Sebastián e Ibaizabal como comarcas muy relacionadas con los tumores de estómago y colon-recto, y poco relacionadas con tumores de ganglios linfáticos e incluso, tal vez, de pulmón. Por el contrario, fueron la Zona Minera y Donostialdea las mejor caracterizadas por los tumores de nódulos linfáticos. Estas dos últimas, junto con el Valle de Aiala, manifestaron un comportamiento inverso a las arriba descritas en su relación con el cáncer de estómago. El resto de los tumores se acomodaban en el entorno cercano al centro de gravedad, por lo que no fueron de gran importancia a la hora de identificar tendencias.

Figura 2. Análisis factorial de correspondencias. Mujeres. CAPV 1986-88

Figura 3. Representación del patrón costa-interior identificado en el análisis de correspondencias. Hombres

Mujeres

El 21,4% y el 18,5% de la información se condensaba con los factores 1 y 2, lo que sumaba en conjunto el 40% (Fig. 2). Al igual que entre los hombres, se advertía un patrón general interior-costa caracterizado ahora por el factor 1, mientras que el factor 2 marcaba características aisladas de comarcas y tumores.

Así, el factor 1, o eje vertical en el gráfico, tomaba un papel similar al factor 2 en los hombres, al diferenciar el comportamiento de las comarcas de la costa con respecto a las del interior. Se comprobó que en las coordenadas positivas de este eje se localizaban las comarcas costeras, a excepción de Donostia-San Sebastián, Zona Minera, Barakaldo y Oiarzabal. A pesar de no seguir la tendencia, únicamente la comarca de Oiarzabal constituía una excepción, ya que se situaba muy marginalmente. Por el contrario, las otras tres se encontraban muy cerca del valor cero. Entre las negativas, se observaban las del interior, salvo las comarcas de Tolosaldea y el Duranguesado que no marcaban tendencia en este sentido. Ninguna de ellas fue excepción marginal porque ambas se situaban en coordenadas cercanas a cero (el patrón costa-interior identificado en las mujeres se representa en la figura 4). Retomando el gráfico de la figura 2, se pudieron identificar como responsables de la diferencia en las comarcas costeras los tumores de cavidad oral, que se situaba casi en el extremo del eje, el melanoma de la piel y los de tejido hematopoyético y reticular. Los que marcaban la diferencia en las zonas interiores, mostrando posiciones menos marginales, fueron el de vesícula biliar, el de pulmón y, en menor medida, el de estómago. En este caso...
la tendencia venía dada principalmente por las posiciones claramente opuestas que presentaban la comarca Uribealdea por un lado, y Arrigorriaga (y con menos fuerza Álava Rural) por otro.

El factor 2 recogía la información caracterizada por la zona de Uribealdea (que también se distinguía en el factor 1) y Duranguesado frente a Lea-Artibai y Urola Medio. Los tumores que determinaban este factor eran los de cavidad oral, tejido hematopoyético y estómago, al encontrarse manifiestamente relacionados con las dos primeras comarcas y poco asociados a las dos últimas. En especial, cabe reseñar la relación inversa entre Urola Medio y Lea-Artibai y el cáncer de estómago. Al igual que en los hombres, el resto de tumores por encontrarse cerca del centro de gravedad no marcaban perfiles especiales.

Discusión

El estudio aportaba en los dos sexos resultados que señalaban una tendencia geográfica, la cual venía determinada por la división entre costa e interior. Esta división se identificó más claramente en las mujeres al presentar este grupo menor número de comarcas que no marcaban ningún tipo de tendencia. Podemos observar del mismo modo, que entre éstos últimos, la mayoría de comarcas que no seguían la tendencia correspondían a núcleos más densamente poblados. Por todo ello, se podría concluir que, si bien en las mujeres el patrón es más general, en el caso de los hombres podría estar limitado a las comarcas rurales.

En los hombres, las comarcas que más definían este comportamiento eran Urola Garaia y Donostiagida, ambas de Gipuzkoa. Por parte de los tumores, los que más discriminaban fueron los de esófago, ganglios linfáticos y sistema nervioso en las comarcas costeras, y vejiga urinaria, laringe y estómago en las interiores.

La zona de Uribealdea para la costa y Arrigorriaga y Álava Rural para el interior, eran en las mujeres las que más marcaban esta tendencia. Aquí, los tumores de cavidad oral, de sistema hematopoyético y el melanoma de la piel establecieron la diferencia en la zona costera, y los de vesícula biliar, pulmón y estómago en el interior. Tanto en los hombres como en las mujeres, la relación entre las comarcas costeras y los tumores que las diferenciaba, era más fuerte que en las comarcas del interior. Se pudo, además, apreciar la gran desigualdad entre Álava Rural y la Zona Minera de Bizkaia en los hombres. Aunque menos acusada, en las mujeres existía oposición entre Uribealdea y Duranguesado por un lado y Urola Medio y Lea-Artibai por el otro.

Estos resultados se han visto confirmados en un trabajo que con posterioridad a éste hemos llevado a cabo?.

Todos estos resultados nos llevan a plantear la pregunta de si han existido en el pasado hábitos de vida y factores ambientales diferentes entre los habitantes de la costa y los del interior. Y si así fuera, la siguiente cuestión a establecer sería si actualmente siguen existiendo estas diferencias que podrían en el futuro dar lugar a determinados tipos de tumores. No obstante, antes de establecer estas conclusiones, es preciso considerar las diversas limitaciones que el presente estudio haya podido tener. En primer lugar, resulta fundamental que la fuente de datos, en este caso el Registro de Cáncer de Euskadi, presente una cobertura, además de satisfactoria, lo suficientemente homogénea en lo que respecta a la recogida de datos en las diversas áreas geográficas. Por otro lado, el lugar de residencia de los casos debiera estar adecuadamente validado y en tercer lugar, es necesario que las tasas de incidencia sean obtenidas en base a un periodo de tiempo lo suficientemente dilatado para garantizar su estabilidad.

Respecto al primer punto planteadlo, tal y como se ha mencionado, los indicadores de calidad del registro están en los límites aceptables. Sin embargo, los valores de dichos indicadores no son completamente homogéneos entre los tres territorios históricos: los indicadores de Álava son relativamente mejores, debido probablemente a que presenta una estructura sanitaria menos compleja que los otros territorios, lo que facilita la búsqueda de casos'.
Por su parte, no parece exagerado pensar que, en ocasiones, la residencia obtenida a partir de la historia clínica no representa realmente el lugar habitual de residencia del caso. Puede ocurrir que en esta variable, en lugar de figurar la residencia real del caso, aparezca reflejado el domicilio de familiares, donde haya residido el caso durante su estancia en la localidad del centro asistencial al que haya acudido. La precisión en este dato es imprescindible para confirmar que realmente las neoplasias estudiadas se distribuyen tal y como se obtiene en los resultados, pero además al tratarse de investigar factores de riesgo etiológicos, deberemos conocer otras residencias que haya tenido el caso, en particular en las primeras etapas de la vida.

Y en tercer lugar, las tasas estandarizadas que ocupaban cada celda de la matriz a partir de la cual se llevó a cabo el análisis, eran las tasas promedio de los años 1986, 1987 y 1988. Tres años de registro pueden no ser suficientes para asegurar la consistencia de las tasas en una unidad geográfica más pequeña que territorio histórico, hecho que resulta aún más probable en el caso de los tumores poco frecuentes (cavidad oral, pulmón y melanoma de la piel en mujeres).

Por todo ello, sería conveniente que la futura realización de nuevos análisis geográficos para la determinación de posibles tendencias del cáncer en una comunidad dada, se llevaran a cabo habiendo garantizado previamente una cobertura satisfactoria y homogénea por parte de la fuente de datos, una correcta validación de la variable "residencia", y un periodo de tiempo lo suficientemente extenso para permitir la consistencia de las tasas.

Por nuestra parte, el Análisis Factorial de Correspondencias que hemos efectuado se nos ha revelado como una interesante herramienta de estudio para datos epidemiológicos: por una parte, su aplicación a la información sobre incidencia del cáncer en nuestra Comunidad nos ha permitido identificar patrones geográficos entre las comarcas y los tumores responsables de ellos. Por otro lado, el análisis se muestra también como un potente generador de hipótesis, pues de sus resultados surgen preguntas puntuales cuya respuesta exigirá el diseño y la realización de estudios particulares.

Bibliografía