This report gives a comprehensive explanation of the multivariate technique called correspondence analysis, applied in the context of a large survey of a nation's state of health, in this case the Spanish National Health Survey. It is first shown how correspondence analysis can be used to interpret a simple cross-tabulation by visualizing the table in the form of a map of points representing the rows and columns of the table. Combinations of variables can also be interpreted by coding the data in the appropriate way. The technique can also be used to deduce optimal scale values for the levels of a categorical variable, thus giving quantitative meaning to the categories. Multiple correspondence analysis can analyze several categorical variables simultaneously, and is analogous to factor analysis of continuous variables. Other uses of correspondence analysis are illustrated using different variables of the same Spanish database: for example, exploring patterns of missing data and visualizing trends across surveys from consecutive years.
Este artículo desarrolla una amplia explicación de una técnica de análisis multivariada denominada análisis de correspondencias, aplicándola a datos de una encuesta nacional de salud, en este caso la Encuesta Nacional de Salud española (ENS). Primero se indica cómo puede utilizarse el análisis de correspondencias para interpretar una tabla de contingencia visualizándola en forma de un gráfico de puntos que representan las filas y columnas de la tabla. También pueden ser interpretadas diferentes combinaciones de las variables codificando los datos de la manera apropiada. Esta técnica puede emplearse también para obtener valores óptimos de escala para los niveles de una variable categórica, dándole de este modo un sentido cuantitativo a este tipo de variables. El análisis de correspondencias múltiple puede analizar varias variables categóricas simultáneamente, y es análogo al análisis de factores de las variables continuas. Otras aplicaciones del análisis de correspondencias se ilustran usando diferentes variables de la ENS; por ejemplo, para analizar pautas en los datos perdidos y visualizando tendencias entre encuestas de años consecutivos.